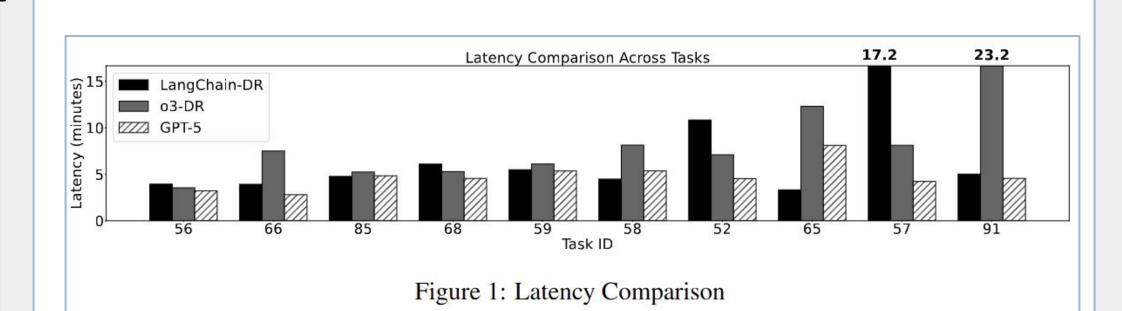
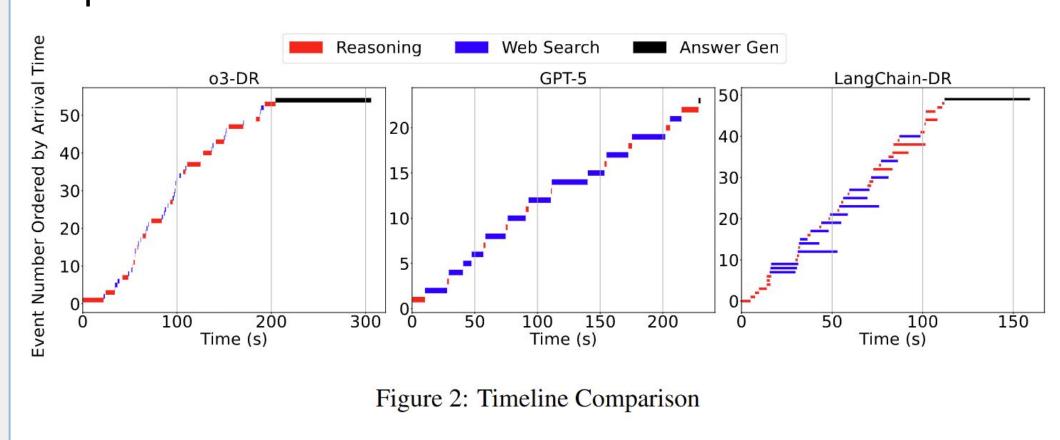

Demystifying Delays in Reasoning: A Pilot Temporal and Token Analysis of Reasoning Systems

Q.Qi (MS), R. Abhyankar (PhD); Y. Zhang (Pl@UCSD)

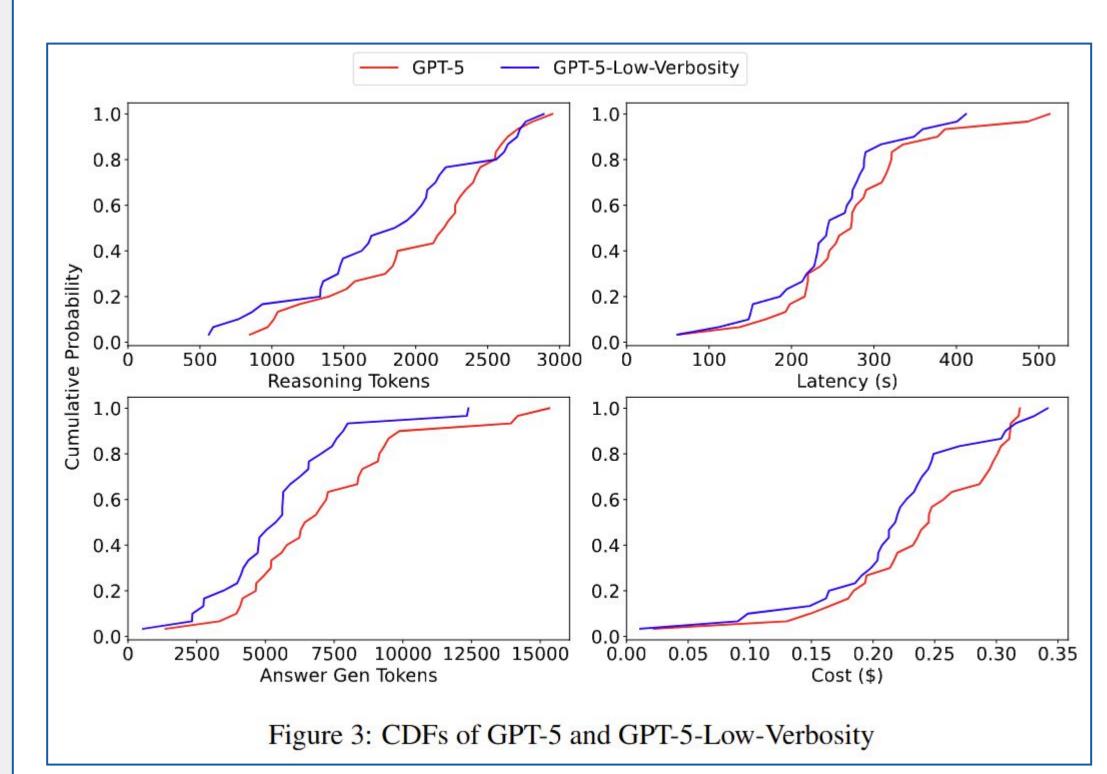

Objectives

- Goal: The paper presents the first systematic temporal study of three representative reasoning models and agents.
- SOTA: Current research focuses almost entirely on the accuracy or quality evaluation, not speed.



- Challenges: Existing top-tier deep research frameworks conduct tasks by running complex workflows with tool-callings, making it difficult to find the exact bottlenecks with a unified standard.
- Objective:
 - To highlight that the temporal dynamics of reasoning systems are heavily shaped by tool latency, particularly web search, often more than the language models' internal reasoning processes.
 - To motivate rethinking tool orchestration to improve end-to-end latency, which will be critical for real-time workloads requiring high levels of reasoning.

Technical Approach



- For O3-DR and GPT-5, the OpenAl response API was used to capture and categorize internal events into reasoning, web search, and final answer generation. For LangChain-DR, the source code was instrumented to separate each LLM call and tool call into an event.
- A typical task involves reasoning intertwined with web search before generating the final output report.
- The "web search" phase was defined to include subsequent summarization or content processing steps to ensure consistency across systems.
- O3-DR and GPT-5 are entirely synchronous, while LangChain-DR has built-in asynchronicity, such as parallel web search calls.

Technical Approach

 GPT-5 Verbosity: low-verbosity setting was tested and found to be 10% cheaper and faster with a 16.5% drop in accuracy and less efficient on an accuracy-per-dollar basis.

- LangChain-DR Web Search:
 - The difference between short and long tasks was found to be heavily determined by the number of tokens on the webpage.
 - This suggests that the tokens produced by web page crawling can impact end-to-end performance.

Experimental Setup

- Systems: OpenAl O3-deep-research (O3-DR), OpenAl GPT-5, and LangChain Deep Research Agent (LangChain-DR).
- Benchmark: 10 tasks (5 long, 5 short) randomly sampled from DeepResearch Bench.
- Evaluation: The benchmark uses Gemini-2.5-Pro as the judge model to evaluate answer quality based on comprehensiveness, analysis quality, and other factors.
- Metrics: End-to-end latency, tokens for each stage (reasoning, output), dollar cost, and final accuracy score.

Table 1: Latency	(min), tokens, cos	st, and accuracy	of different mode	ls/agents using	long tasl
Setting	Tokens				
	Latency (min)	Reasoning	Output	Cost (\$)	Score
o3-DR GPT-5 LangChain-DR	10.52 ± 4.22 5.52 ± 1.37 18.57 ± 7.72	4135 ± 1081 2241 ± 409 3527 ± 2692	15249 ± 5511 9127 ± 3057 2147 ± 783	1.27 ± 0.26 0.28 ± 0.03 0.57 ± 0.60	47.88 47.81 40.62

Table 2: Latency (min), tokens, cost, and accuracy of different models/agents using short tasks.

	Tokens				
Setting	Latency (min)	Reasoning	Output	Cost (\$)	Score
o3-DR	5.73 ± 1.42	3450 ± 928	6453 ± 2577	0.82 ± 0.26	45.12
GPT-5	3.98 ± 0.82	1818 ± 652	5261 ± 1789	0.19 ± 0.06	46.03
LangChain-DR	4.62 ± 0.83	1966 ± 1061	2327 ± 414	0.26 ± 0.17	44.20

Results and Comparison to the State-of-the-Art

- Key Finding: Web search, not in-model "thinking," dominates the overall latency for both GPT-5 and LangChain-DR.
- On average, web search accounts for 73% of total wall-clock time on GPT-5 and 50% for LangChain-DR. In some cases, web search can account for up to 91% of end-to-end latency.
- The final answer generation step consumes the majority of completion tokens across all systems. This is due to extensively retrieved context inflating the prompts at this stage.



Figure 4: Latency Breakdown by Stage

Key Accomplishments, **Showstoppers & Next Steps**

Key accomplishments:

- Identified that tool latency (specifically web search) and retrieval design are primary levers for speeding up reasoning end-to-end.
- Found that web search can dominate end-to-end request latency, accounting for 73% of total time on average for GPT-5.
- Accepted to the Workshop on Efficient Reasoning at NeurIPS 2025.

Grand Challenge Applications

 Efficient reasoning can potentially be leveraged during both deep insight and drug discovery.

Demo

 The instrumentation and analysis framework used in this study is open-sourced at: https://github.com/WukLab/Deep-Research-Analysis

Lessons learned:

- We learned the primary bottleneck is not the model's reasoning time, but the surprisingly high latency of its tools, with web search dominating up to 91% of the total request time.
- Showstoppers:

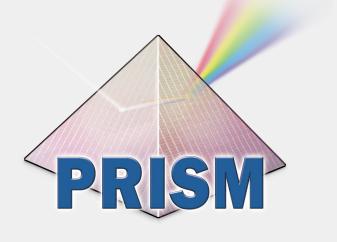
Next steps:

 Explore mechanisms to improve the temporal efficiency of reasoning models and deep research agents.

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.

Publications: Publication: Qi Qi, Reyna Abhyankar, Yiying Zhang, "Demystifying Delays in Reasoning: A Pilot Temporal and Token Analysis of Reasoning Systems," the 1st Workshop on Efficient Reasoning Co-Located with NeurIPS 2025 (ER '25); Publication: Reyna Abhyankar, Qi Qi, Yiying Zhang, "OSWorld-Human: Benchmarking the Efficiency of Computer-Use Agents," the 1st Workshop on Computer-Use Agents Co-Located with ICML 2025 (WUCA '25);

AVAILABLE FOR HIRE



PRISM Annual Review | November 12-13, 2025

